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ABSTRACT 
 
Alzheimer’s disease (AD) is the sixth leading cause of death in the United States and the most common neurodegen-
erative disease in adults over 65. Early-stage AD is often misinterpreted as normal cognitive aging because it may not 
cause adverse symptoms or visible behavioral changes for up to 20 years. Machine learning has been used to avoid 
misinterpretation of data and more accurately predict the onset of AD. This study aims to use the data typically avail-
able in a clinical setting to predict the onset of AD while maintaining a high level of accuracy. This study proposes a 
deep learning model that uses multimodal input data and performs multitask classification to predict AD diagnosis 
and scores of two commonly used cognitive assessments: Alzheimer’s Disease Assessment Scale (ADAS) and Mini-
Mental State Examination (MMSE). The model was validated using the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset of 1737 patients. The current model achieved a greater accuracy in predicting AD diagnosis and a 
lower error in predicting ADAS and MMSE scores than existing state-of-the-art models. This model can be applied 
to the clinical setting so that accurate diagnosis can be achieved, and appropriate action can be taken. Future investi-
gations could include using a convolutional neural network (CNN) to process data from clinical images directly or 
training and validating the model with other clinical datasets to further improve its accuracy. 
 
Introduction 
 
Alzheimer’s disease (AD) is the sixth leading cause of death in the United States, and the most common neurodegen-
erative disease in the elderly population [1]. AD symptomology, which includes neuronal decay and brain atrophy, 
causes a significant decline in cognitive functions over time such as memory, recall, behavior, and language [2]. 

When a patient presents with symptoms of AD, image and clinical data are collected to diagnose the patient 
and monitor the progression of the disease. Image data is collected by performing MRI and PET scans. Clinical data 
is collected by interviewing the patient, and consists of age, gender, education, apolipoprotein E4 (APOE4; the pres-
ence of this gene increases AD risk) genotype, and cognitive assessment scores, including the Mini-Mental State 
Examination (MMSE) or the Alzheimer’s Disease Assessment Scale (ADAS) [3] [4]. 

Even though a significant amount of data is collected, two main issues occur: (1) Early-stage AD is often 
misinterpreted as normal cognitive aging because it may not cause adverse symptoms or visible behavioral changes 
for up to 20 years [5] and (2) there is a 99.6% failure rate of clinical trials for AD treatments [6]. To avoid misinter-
pretation and allow for early action to mitigate AD symptoms, a need exists for a more accurate method of detection 
at an earlier stage of the disease until better treatments for AD can be discovered. [7]. 
 
Review of Literature 
 
In the medical domain, machine learning methods can identify patterns using a vast library of existing patient tests 
and diagnosis data and use that to make predictions for another patient [8]. Machine learning methods to predict 
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Alzheimer’s disease have improved greatly over the past decade [8]. With improved models, misinterpretation of data 
can be avoided, and more accurate predictions of AD onset can be achieved with the same data a doctor collects from 
the patient supplemented by a large library of previous patient data. 

In AD machine learning research, input data is categorized into various modalities, including clinical, MRI, 
PET, cognitive, and neuropathological. Previous models have incorporated one or more modalities and have attempted 
to predict either diagnosis, cognitive assessment scores, or both. 

There are four types of machine learning models applied to AD prediction (Table 1). Unimodal single-task 
models [9] [10] only use one type of data (unimodal) and only predict one metric (single-task). Unimodal multitask 
models [11], while more complex than single-task models because they predict multiple metrics, only use one type of 
data, potentially limiting the accuracy of their predictions. Multimodal single-task models [12] [13], while using more 
varied input data than a unimodal model, only predict one metric, potentially limiting the utility of their predictions 
because doctors need multiple statistics to confirm a diagnosis. Multimodal multitask models [14] use multiple types 
of data and predict multiple metrics and are not known to suffer from any of the limitations of the prior models. With 
multimodal data, subtle changes in a patient can be detected, leading to a more reliable diagnosis [14]. 
 
Table 1. Comparison of previous state-of-the-art machine learning models. 

Researchers Model Type Limitations 

Ito et al. [9] 
Yang et al. [10] 

Unimodal, Single-Task 
Only uses one type of data;  

only predicts one metric 

Zhou et al. [11] Unimodal, Multitask Only uses one type of data 

Liu et al. [12] 
Qiu et al. [13] 

Multimodal, Single-Task Only predicts one metric 

El-Sappagh et al. [14] Multimodal, Multitask 
Uses more data than available 

in clinical setting 
 
El-Sappagh et al. [14] is the most recent implementation of multimodal multitask machine learning applied to AD, 
and uses over 600 features from clinical, MRI, and PET data to achieve over 90% accuracy for the diagnosis task, 
greater than previous models. However, in a clinical setting, not as much data is collected, which results in fewer 
features that can be extracted by a machine learning model [15]. 
 

Objective 
 
The purpose of this research is to identify a multitask machine learning model that can predict AD diagnosis (DX), 
13-Question Alzheimer’s Disease Assessment Scale (ADAS), and Mini-Mental State Examination (MMSE) score 
based on multimodal data available in a clinical setting. 

Hypothesis 
 
It is hypothesized that 
H1: The identified model will achieve a higher accuracy on the diagnosis task and lower RMSE values on the ADAS 
and MMSE tasks than current state-of-the-art models. 
H0: The identified model will not achieve a higher accuracy on the diagnosis task and lower RMSE values on the 
ADAS and MMSE tasks than current state-of-the-art models. 
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Methodology 
 
Dataset 
 
Data used in this study was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

The dataset contains data for 1737 patients between 50 and 95 years of age in varying stages of cognitive 
condition, from normal cognitive aging to mild cognitive impairment (MCI) to AD. There are 957 males and 780 
females. For each patient, there are data from the initial visit, categorized as baseline, and subsequent visits every 6 
months for up to 10 years. At their baseline visit, 342 patients were diagnosed with AD. 
 
Data Processing 
 
The dataset was processed using the NumPy, pandas, and scikit-learn Python libraries based on criteria established by 
The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge [7]. The features selected for 
the machine learning model include 13 clinical features known to correlate [6] with AD progression (Table 2), and a 
variable number of features obtained through Principal Component Analysis (PCA) of 328 MRI and PET features that 
were preprocessed by ADNI with the FreeSurfer image analysis program. To obtain an 80%-20% training-test set 
split, approximately 1390 patients were assigned to the training set and the remaining patients to the test set at random. 
 
Table 2. Clinical features used from the ADNI dataset. 

Feature Name Meaning 

DX_bl Baseline diagnosis 
ADAS13_bl Baseline ADAS score 
MMSE_bl Baseline MMSE score 
VISCODE Visit code 

AGE Age 
PTGENDER Gender 
PTEDUCAT Years of education 

APOE4 Number of APOE4 alleles 
RAVLT_immediate Total number of words memorized over 5 trials 
RAVLT_learning Number of words learned between trial 1 and trial 5 

RAVLT_forgetting Number of words forgotten between trial 5 and trial 6 
RAVLT_perc_forgetting Percentage of words forgotten between trial 5 and trial 6 

FAQ Functional Activities Questionnaire score 
 
The data were grouped by patient ID and then ordered by visit code (baseline to 120 months) to create a time series. 
Missing values for each feature were imputed with the median value of that feature from all patients in the training 
and test sets. 
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Model Structure and Feature Engineering 
 
A deep learning model was constructed with the Keras Python library on the TensorFlow backend (Figure 1). As in 
[14], a bidirectional long short-term memory (BiLSTM) layer is coupled to two hidden Dense layers which split into 
three branches, one for each task. 
 

 
Figure 1. Model structure. 
Plot of model nodes, layers, inputs, and outputs. This figure shows the 6-hidden layer configuration, with 3 common 
layers and 3 output-specific hidden layers. 
 
Several combinations of deep learning hyperparameters were evaluated to determine the highest-performing model, 
including the number of features based on PCA, the number of common hidden layers at the head of the model, the 
number of hidden layers for each of the output branches, and the number of nodes in each layer. 
 
Model Evaluation 
 
The model was trained 5 times each with 163, 209, or 340 features (for 85%, 90%, and 100% explained variance for 
the PCA features) and a total of 4, 5, or 6 hidden layers. The metrics used were accuracy for the diagnosis multiclass 
classification task and root-mean-square error (RMSE) for the ADAS and MMSE regression tasks. 
 

Results and Discussion 
 
Figure 2a shows that, with 163 features, the model achieves an accuracy of 87.1% for the diagnosis task, with accuracy 
increasing with the addition of more hidden layers. Figure 2b shows that the model achieves a root-mean-square error 
of 9.95 and 8.6 for ADAS and MMSE, respectively, with the errors decreasing with the addition of more hidden layers. 
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Figure 2. (A) Diagnosis classification accuracy. (B) ADAS and MMSE root-mean-square error.  
163 features. Mean of 5 runs. Abbreviations: HL4, 4 hidden layers; HL5, 5 hidden layers; HL6, 6 hidden layers. 
 
 Figure 3a shows that, with 209 features, the model achieves an accuracy of 89.8% for the diagnosis task, with 
accuracy increasing with the addition of more hidden layers. Figure 3b shows that the model achieves a root-mean-
square error of 5.14 and 3.88 for ADAS and MMSE, respectively, with the errors decreasing with the addition of more 
hidden layers. 
 

 
Figure 3. (A) Diagnosis classification accuracy. (B) ADAS and MMSE root-mean-square error.  
209 features. Mean of 5 runs. Abbreviations: HL4, 4 hidden layers; HL5, 5 hidden layers; HL6, 6 hidden layers. 
 
 Figure 4a shows that, with 340 features, the model achieves an accuracy of 90.6% for the diagnosis task, with 
accuracy increasing with the addition of more hidden layers. Figure 4b shows that the model achieves a root-mean-
square error of 3.59 and 3.82 for ADAS and MMSE, respectively, with the errors decreasing with the addition of more 
hidden layers. 
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Figure 4. (A) Diagnosis classification accuracy. (B) ADAS and MMSE root-mean-square error.  
340 features. Mean of 5 runs. Abbreviations: HL4, 4 hidden layers; HL5, 5 hidden layers; HL6, 6 hidden layers. 
 
Table 3 summarizes the results obtained. 
 
Table 3. Summary of results. 

Features DX Accuracy ADAS RMSE MMSE RMSE 

 HL4 HL5 HL6 HL4 HL5 HL6 HL4 HL5 HL6 

[11] — 0.854(MAE) 0.824(MAE) 

[12] 90.56% — — 

[13] 90.9 ± 2.7% — — 

[14] 91.17 ± 2.18% 0.076(MAE) 0.085(MAE) 

[16] 51.8% 8.537 2.373 

163 82.60% 85.10% 87.10% 2.19 2.16 2.20 1.28 1.10 1.22 

209 84.00% 87.80% 89.80% 2.20 2.15 2.11 1.27 1.11 1.24 

340 84.82% 88.16% 90.60% 1.52 1.66 1.41 0.802 0.570 0.803 
 
The model with 340 features and 6 hidden layers was shown to have the greatest accuracy on the diagnosis task and 
lowest root-mean-square error on the ADAS and MMSE tasks. 
 

Conclusion 
 
This work has demonstrated that it is possible for a multitask multimodal deep learning model to predict diagnosis, 
ADAS, and MMSE with greater accuracy than prior state-of-the-art models [11, 12, 13, 14]. The model with 340 
features and 6 hidden layers was shown to have the greatest accuracy on the diagnosis task and lowest root-mean-
square error on the ADAS and MMSE tasks. By using clinically available features [7], this work improves upon 
existing research. 

Future investigations could include using a convolutional neural network (CNN) or ResNet to process data 
from clinical images directly or training and validating the model with other clinical datasets to further improve its 
accuracy and evaluate its transferability. 
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In the clinical sector, this work could be applied to more accurately diagnose early-stage AD before symp-
toms appear or supplement doctor diagnoses by leveraging insights from large libraries of previous patient data. 
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